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Charge density coordination and dynamics in a rodlike polyelectrolyte
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We study static and dynamic correlation functions of segmental charge density fluctuation on a rodlike
polymer in ionic solutions. The polymer is described by an effective Hamiltonian which incorporates the
Coulomb interaction between fluctuating charges screened by ionic fluid environment. We analytically calcu-
late the correlation functions and discuss how charge distribution and dynamics are affected by counterion
valency and concentration in electrolyte. We find that the charge correlation exhibits an underdamped oscilla-
tion with a wavelength comparable to the counterion size and with the amplitude increasing with the counter-
ion valency. The dynamic correlation of charge density is shown to decay with a characteristic time varying
with the counterion valency and concentration. The multivalency gives rise to faster decay of the correlation

than that given by one dimensional diffusion.
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I. INTRODUCTION

The biopolymers such as DNA, RNA, actin filaments, mi-
crotubules, etc., play an important role in vital activities par-
ticularly in subcellular level as essential structures and func-
tional agencies. One notable feature is that they carry
charges, surrounded by electrolyte solution. The Manning-
Oosawa counterion condensation theory [1,2] describes that
the counterion absorption occurs above a critical charge den-
sity of the polyelectrolyte and has been a basis of the exten-
sive studies that followed. It has been theoretically suggested
[2-5] that the charge density fluctuations on the polymer
induced by mobile condensed counterions can give rise to
bundle formation [6-9] of like-charged polyelectrolytes as a
result of van der Waals—like attraction: when close to each
other, they can attract due to correlation of charge density
fluctuations on each polymer [5]. The charge correlation also
is responsible for DNA collapse [6,10,11] and related reduc-
tion of bending rigidity [12,13].

Also, by numerical simulations [14,15], charge oscillation
on a rodlike polyelectrolyte has been observed in the pair
correlation function of the condensed counterions, which is
similar to the short-range order in a simple liquid. Notably,
the counterion-induced charge fluctuation manifests oscilla-
tion along the polymer [5]. Recently, Angelini et al. observed
counterion charge density waves (CDWs) between attracted
F-actin filaments with small angle x-ray scattering (SAXS)
[8].

Along with the spatial oscillations, counterion dynamics
on the polymer, probed by time correlation function, is an-
other important issue. By high-resolution inelastic x-ray scat-
tering experiment [16], an acousticlike phonon mode of the
CDW on a bundle of F-actin filaments was observed, yield-
ing a nontrivial dynamics associated with cage effect of the
ions. The phonon mode of the charge density was predicted
by Zandt et al. also for a single DNA with counterions [17].
Recently, a molecular dynamics study [18] reported that the
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dynamical charge autocorrelation function on the polyelec-
trolyte condensed typically with monovalent counterions de-
cays within 0.1 ns. But, analytical characterization of their
dynamics and dependence on the counterion valency and
ionic strength is still lacking. Furthermore, in spite of exten-
sive studies for radial charge correlation functions of the
polyelectrolyte, there have been only a few studies for both
spatial (longitudinal) and temporal charge density fluctua-
tions along the polymer.

In this paper, we investigate equilibrium distribution and
dynamical behavior of the charge density on the rodlike
polymer in an asymmetric electrolyte solution with screened
Coulomb interaction in terms of the static and dynamic cor-
relation functions. We interpret the correlation function by
linear response theory, where it is proportional to charge den-
sity response to a perturbation on a neighboring position. In
the following section, we consider a fluctuating charge den-
sity with a model Hamiltonian of the system described
above. We find the correlation functions of the charge density
show underdamped oscillation with a characteristic length of
the oscillation directly associated with the size of the coun-
terions. The amplitude of the correlation function depends on
valency of the counterions and electrolyte concentration,
which is analyzed. In Sec. III, we use a dynamical equation
of motion for the charge fluctuation and obtain the time cor-
relation functions. We discuss how the characteristic decay
time depends on the valency and concentration. We show
that the autocorrelation for the case of strong electrostatic
interaction decays much faster than is given in one dimen-
sional diffusion.

II. EFFECTIVE HAMILTONIAN AND STATIC
CORRELATION

We consider that a negatively charged rodlike polymer of
a length L is immersed in an ionic solution with no external
flow. The solution is composed of monovalent anions and
neutralizing cations of the valency of z(=1). The bare poly-
mer is assumed to have a fixed number density, og=1/a. a is
a microscopic length which contains a negative elementary
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charge —e. A DNA is a strongly charged polyelectrolyte with
a known to be 0.17 nm.

Consider that the segmental position is given by s, the
contour length along the chain, 0<s=</L. Due to thermal
fluctuation, the counterions will incessantly adsorb and des-
orb on the segments, constituting an effective line charge
density o(s) that varies spatially and temporally [19]. Denot-
ing its fluctuation by So(s)[o(s)=(o)+ Sco(s)], the effective
Hamiltonian of the rodlike polyelectrolyte is given as H:

BH = —f ds[Sa(s)]* + f f dsds  o(s)als’) erols=s'|

s =]
(1)

where B=1/kgT and Ig=e*/(ekgT) is the Bjerrum length.
The first term in Eq. (1) denotes the entropy cost for the
charge fluctuation evaluated to the harmonic order. It means
that, with the electrostatic interaction turned off, the charge
density obeys a Gaussian distribution with the average (o)
and variance proportional to x~'. The last term in Eq. (1) is
the screened Coulomb interaction with the Debye-Hiickel
screening length \p=«p'=1/V4mlgz(z+1)c for z:1 electro-
lyte and c is its concentration [20].

To evaluate the y, a measure of inverse charge fluctuation,
self-consistently, the charge density on the polymer is de-
fined as o(s)=—oy+zo.(s) with o.(s)=(o)+d0.(s), the
number density of absorbed counterions, with e put to unity,
so that (o)=—0y+z(0,) and So(s)=z00,(s). We consider the
absorbed counterions under no electrostatic interactions as
ideal gas and use the entropic contribution to free energy,

L
BE e = f ds[o(s)In(o(s)lp) — a(s)], ()
0

where [, is a microscopic length. Expanding Eq. (2) to the
harmonic order in do and comparing it with Eq. (1), we
obtain y=1/(z*c)). For the average number density of ab-
sorbed counterions, (o), we use the mean charge density,
(o)y=-1/(lpz) following Manning-Oosawa mean field theory
for a rodlike chain in the z:1 electrolyte [Eq. (3.10) in Ref.
[20]]. Tt has been also shown that the (o) is valid up to the
z:1 electrolyte concentration as high as ~100 mM [21,22].
Then we obtain y=alg/(zlz—a) which coincides with that in
Ref. [12].

To facilitate evaluation of the charge density correlation
functions, we analyze the Hamiltonian in the Fourier space
using the Fourier mode of So(s) defined as

5o(s) = =3 e 5g). 3)
VL 4

where L=Nb. Here N is the total number of the basic seg-
ment and b, to be determined later, is its length incorporating
the effective charge. The g accordingly has N discrete values
q=2nm/L ranging from -w/b to w/b with integer
n=-N/2,...,N/2. Then, to the harmonic order in the charge
fluctuation modes, Eq. (1) is represented as
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FIG. 1. (Color online) (802) as a function of ¢ for various va-
lency z.

(4)

where

S(q) =[x+ 21sKo(b\NG + )], (5)

and K is the zeroth order modified Bessel function of the
second kind, which results due to the electrostatic interac-
tion. One notes that in treating the electrostatic energy term
in Eq. (1), the unit segment length b is involved as a lowest
cutoff length to avoid singularity arising from self-
interactions between the charges.

From the equipartition theorem, the average of energy per
mode in Eq. (4) has kgT/2 so that

(|60(q)[*) = S(q). (6)

Since K|, is positive definite, Eq. (6) shows that the charge
fluctuation is restrained by the electrostatic effects. As the
electrolyte concentration ¢ increases, the Coulomb interac-
tion is screened so that S~!(g) approaches . Furthermore, y
is a decreasing function of z and thus large valency enhances
the fluctuation. Including this electrostatic interaction effect,
the strength (or the variance) of the density fluctuation {50>)
is

@)=1 3 oot =~ [ dasia. )
q

where ¢ runs from ¢,,=/L to q,=m/b for the integration.
In principle, the cutoff length b can be determined self-
consistently by measuring (S8c?), which is inversely propor-
tional to b in both low-screening and high-screening limits.
Since the charge fluctuation in our mesoscopic model origi-
nates from the incessant adsorption and desorption of the
counterions on the polymer, we take the b as size comparable
to the counterions diameter, as discussed later. Figure 1 de-
picts (802) as a function of ¢ for three different valences,
z=1, 2, and 3: it shows that (So”) increases monotonically
with ¢ as well as with z. For the value of ¢ smaller than
100 mM, to which the physiological condition applies for
z=1 case, the variance remains a small constant independent
of c¢. A similar tendency is observed for z=2 and z=3 and
the concentration up to ¢~ 10 mM. This is the over-riding
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FIG. 2. (Color online) (do(s)do(0)) with various z at
¢=50 mM. The correlation functions oscillate with a characteristic
length b independent of z, and with the amplitude increasing with z.
This behavior can be interpreted by the linear response theory,
where the oscillation of the correlations corresponds to distribution
of the charge density and coordination of alternating charge in re-
sponse to a charge placed at s=0 (arrow). All the other parameters
are the same used in Fig. 1.

effect of the electrostatic interaction by the electrolyte. The
counterion-induced enhancement of the fluctuation can be
maximal by an interplay of the multivalency and high
electrolyte concentration. We here take a=0.17 nm, b
=0.4 nm as the typical hydrated counterion diameter [5,16],
lp=0.71 nm for water at 300 K and L=80 nm.

We obtain static charge correlation functions by inverse
transform of Eq. (6),

(60(s)60(0)) = %2 |60 (q)|*) = %T f dge™"S(q)
q

1 /b
=— J dq cos(gs)S(q), (8)
/L
and the normalized static correlation function
C(s) = {60(s) 80(0)){ 507). 9)

Figure 2 shows (8o (s) 80(0)) for various values of z with
¢=50 mM. Strikingly, it has an oscillatory behavior with a
wavelength =2b for all values of z, but with the amplitude
increasing with z. This is understood in part if we consider
that

am
dq cos(qs)S(q)
Cls) = —"— - (10)
f dqS(q)
Im
In the limit of high screening S(¢)=x"' and C(s)

=sin(7")/ . In the other cases, S(¢g) in Eq. (10), understood
as a weighting function, rapidly increases with ¢, so that
C(s) ~cos(%). The oscillation of (So(s) o(0)) is character-
ized by the wavelength 2b, and the amplitude proportional to
7> and (o).
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FIG. 3. (Color online) (So(s)dc(0)) with various ¢ at z=2.
Variation of the fluctuation is dominantly enhanced within the
screening length [vertical lines: 50 mM (dashed blue) and 200 mM
(dash-dotted red)]. All the other parameters are the same used in
Fig. 1.

To gain an idea about the nature of oscillation physically,
consider the linear response theory [23], according to which
(80(s)50(0)) is proportional to the average of So(s) that
occurs in response to charging at s=0. The oscillation is
attributable to successive coordination of charges in alternat-
ing signs in response to this central charge, which is origi-
nated from competition between electrostatic attraction and
hard-core repulsion [24]. The charging can be done by ab-
sorbing counterions which can inverse the negative charge of
DNA to a positive value. In the nearest neighborhood of this
positive central charge, a negative correlation (negative
charge) would appear, leading to electrostatic attraction. The
charge oscillation behavior is in accord with the result of Ha
et al. [5], where the charge oscillation of the static charge
correlation along a charged rod with the unscreened electro-
static interaction occurs due to the finite size of counterions
which they incorporated. Indeed, this type of oscillation of
the charge density fluctuation correlation was detected in
small angle x-ray scattering experiments in two-phase ionic
liquids where the diffusive electron density distribution alter-
nates along one direction [25]. In the scattering experiments,
S(g) in Eq. (5) represents the structure factor which is pro-
portional to differential cross sections. Recently, Naji et al.,
using Monte Carlo simulations [15], reported that the one
dimensional pair correlation function of the condensed coun-
terions, which represents the probability distribution of the
charge density along the axis, has an oscillatory behavior
with its amplitude increasing with z (in their £ and =).

Figure 3 depicts the correlation function with various
electrolyte concentrations with z=2. The vertical lines de-
note the screening lengths for 50 mM (dashed blue) and
200 mM (dash-dotted red), respectively. The amplitude of
the correlation is enhanced not only by ¢=10 mM as de-
scribed above in Fig. 1 but also mainly within the screening
length.

III. THE DYNAMIC CORRELATION FUNCTIONS

Dynamics of the charge fluctuation due to condensing
counterions is an important issue but poses a challenge to
measure nanoscale resolutions in both space and time. Re-
cently, Angelini et al. reported liquidlike organization of the
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condensed counterions (Ba®*, Sr>*, and Mg”*) between at-
tracted F-actin filaments and their acousticlike phonon mode
using inelastic x-ray scattering [16]. They found the diffusion
coefficient of the condensed counterions with z=2 at ¢
~30 mM has ~5.0X 10° nm?/s by fitting with a simple
Lorentzian structure factor. This diffusion coefficient gives
estimation of the counterion “residence time,” the time to
diffuse a distance equal to its size, to be ~1072 ns. Also,
molecular dynamics simulation study [18] reported that the
condensed counterions with z=1 have a short lifetime of
order 107! ns.

Assuming the net charge on the polymer rod is conserved,
the charge fluctuation in time is governed by the Cahn-
Hilliard diffusion model [24,26],

d & SH
;tﬁo'(s,t)zDog<m>+§(r(s,t), (11)

where D, is the Onsager coefficient and &,(s,?) is the Gauss-
ian random noise related with the diffusion constant D by the
fluctuation-dissipation theorem

&+
(&o(s5,0)€0(s",0)) == 2kgTD~ 5 os—s")on).  (12)

From the Fourier transform of Eq. (11), we obtain

%5U(q’t) == Deqz( ) + é:(r(q’t)’ (13)

SH
o d0*(q)]

which, by substitution of the Hamiltonian in Eq. (4), be-
comes

do(q)
7,(q)

+&,(q.1).

(14)

Here, D,(q)=D/xS(q) is the renormalized diffusion con-
stant while D is the diffusion constant of the counteri-
ons without the Coulomb force. Note that D,(q)
=D[1+2[3Ky(b\g>+ )/ x] is larger than D by the fraction
2UKy(b\G*+Kk5)/ x. We take D~1.2X 10 nm?/s using the
Einstein relation D=kgT/(3mnb) for 300 K water, and
7,(q)=xS(q)/Dg? is the characteristic relaxation time of the
charge density fluctuation. From Eq. (14), we find the time
correlation function,

(80(q.1)85%(q,0)) = (| 8a(q)[H)e™" ™), (15)

and its inverse transform is

g&r(q,t) =-D,(q)q*50(q) + £,(q,1) = -

(60 (s,t) 55(0,0)) = 717 f dqS(g)cos(gs)e @ (16)

Figure 4 shows the normalized dynamic correlation func-
tion for the charge fluctuation for different times at z=1 and
¢=100 mM. Due to the charge diffusion with diffusivity D,
the correlation relaxes to zero as time elapses. Like the static
correlation functions, the dynamic counterparts also can be
interpreted by linear response theory [24]. Retain an excess
charge at s=0 until it is released at r=0. The average charge
induced on s at time ¢ is proportional to (5o (s,)50(0,0)).
The characteristic time can be estimated to have 7,
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FIG. 4. (Color online) The normalized dynamic correlation
function of o z=1, c=100 mM, D=1.2 X 10° nm?/s. The charac-
teristic time of decay is of order 1072 ns. We use a=0.17 nm, b
=0.4 nm, /3=0.71 nm, and L=80 nm.

=xS(qum)/ (qu2D) for the mode of oscillation corresponding
to gy =m/b. Hence one can estimate the 7,, for each z=1, 2,
and 3 case with their physiological electrolyte concentra-
tions, respectively, to be in the order of 1072 ns, which is in
the same order of magnitude observed in the related experi-
ment of Ref. [16].

The dependence of the dynamic correlation on z is de-
picted for z=1, 2, and 3 at t=1072 ns and ¢=50 mM in Fig.
5. It shows that as z increases, the charge density fluctuation
decays faster. Note that the decay of the oscillations occurs
within s ~ 1.4 nm which is Ap at z=1 and ¢=50 mM.

To characterize the time dependence of the correlation, we
consider the autocorrelation function at an equal position,

(S0 (s,1) 80 (s,0)) f dqS(q)X(q.t)
= (807) - . (17
J dqS(q)
where
X(q,t) = o~ DT18(@) X (18)

When there is no electrostatic interaction, Eq. (17), by noting
S(g)— 1/, is reduced to
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FIG. 5. (Color online) The normalized dynamic correlation
function of 8o with z=1, 2, and 3 at r=10"2 ns, ¢=50 mM, and
D=1.2x10° nm?/s. The decay of the fluctuation is enhanced with
z in region s=<b. All the other parameters are the same used in
Fig. 4.
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FIG. 6. (Color online) Numerical plot of the normalized auto-
correlation functions of the charge fluctuation vs time with various
value of z=1, 2, and 3 at c=50 mM. The dashed black line depicts
highly screened limit, i.e., no electrostatic interaction. All the other
parameters are the same used in Fig. 4.

am >
Co®) =gy —qn)™" f dge P!
qm

_ £T er f( \‘/EqM ) —cr f( V’Eqm)
2 DGy = 4,)

where erf denotes the error function. When b2%/D<t
<L?/D, Eq. (19) is reduced to

: (19)

~F12

Co([) = (20)

4Dt

characteristic of one-dimensional free diffusion. Figure 6 de-
picts numerical plots of the autocorrelation function in Eq.
(17) with z=1, 2, and 3 at c=50 mM along with Cy(7) in Eq.
(19) (the dashed black line). The electrostatic interaction
gives the decay of the autocorrelation much faster than in
Cy(1), the trend of which is enhanced as z increases.

To explain the electrostatic effect on the autocorrelation,
we emphasize that C(¢) in Eq. (17) is the average of X(q,?)
over all distribution of ¢ weighted by S(g). Since S(g) is a
rapidly increasing function up to ¢, as noted earlier,
S(¢)X(q,r) has a maximum at g, which is order of g, so
that C(¢) can be approximated as

C(t) =~ X(Q()’ t)

2 -1
= ¢~ P4ptS(a0) ™ /x

= exp{- Dqgt[ 1 + 2(¢ = )Ko(b\gd + 1)1}

= exp{- Dgyf[1 + a(gp,z.0)]}. (21)

&é=zlg/a is the Manning parameter: when £> 1, counterion
condensation occurs. The a(q,z,c)=2(é-1)Ky(bVg>+ Kf))
denotes the fraction of diffusivity enhancement by electro-
static effect due to the counterions. Figure 7 shows compari-
son of the approximated correlation functions (dotted lines)
in Eq. (21) with C(z) in Fig. 6 (solid lines) around the char-
acteristic time, 0.1 ns. They are in good agreement with g, of
order of ¢qy, ¢9=0.54q,, (no Coulomb), 0.63¢g,(z=1),
0.59¢4,(z=2), and 0.53¢,,(z=3), respectively.
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FIG. 7. Comparison of the approximated C(z) (dotted lines) with
Fig. 6 (solid lines) around the characteristic time, 0.1 ns. we take
q0=0.54qy; (no Coulomb), 0.63gy(z=1), 0.59¢,(z=2), and
0.53¢,(z=3), respectively.

On the other hand, considering ¢ dependence of the auto-
correlation, the a(g,z,c) is a decreasing function of ¢, and
C(r) decays more slowly as ¢ increases at fixed z. Figure 8
depicts the numerical plot of the autocorrelation in Eq. (17)
with ¢=10, 100, and 500 mM at z=1. Note that our approxi-
mated C(¢) in Eq. (21), in the same manner of the above z
dependence case, well describes this tendency of the decay
with ¢. This implies that as screening length is shortened to
b, the interaction between the effective charges on the poly-
mer is screened so much that they seldom respond to the
perturbation (removed charge at s=0) and the C(¢) eventu-
ally decays more slowly than that of more strongly interact-
ing (low ¢) ones. Note that increase of the electrolyte con-
centration enhances the local charge fluctuation within the
screening length (in the static correlation) but slows its decay
(in the dynamic correlation).

IV. SUMMARY

We have investigated static distribution and dynamic re-
laxation of the charge density along a rodlike polyelectrolyte

1.0

c=10mM
————————— ¢ =100 mM
——————— c =500 mM

0.9

0.8+

0.7+

C(t)

0.6

0.5
1z=1

0.4 . =
0.00 0.01 0.02

t [ns]

FIG. 8. (Color online) Numerical plot of the normalized auto-
correlation functions of the charge fluctuation vs time with various
values of ¢=10, 100, and 500 mM at z=1. All the other parameters
are the same used in Fig. 6.
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in an ionic solution from the charge correlation functions.
Due to the counterions adsorbed on the negative charged rod,
the charge density fluctuates with the electrostatic interaction
screened by the electrolyte. We found that the charge density
correlation along the rod has an underdamped oscillatory be-
havior. This was interpreted as the charge distribution in-
duced as response to a central charge perturbation, in accor-
dance with the linear response theory. The length period of
the oscillation is directly related to the lower cutoff length b,
which is ascribed to the hard-core size of the counterions
adsorbed. It is shown that as multivalency z and ionic con-
centration c¢ increase, the amplitude of the static correlation
function increases due to fluctuation and screening of
charges, while the period of oscillation is nearly independent
of z and c. This oscillatory behavior of the charge fluctuation
has been already found in the two phase diffusive ionic lig-
uid system [25] and confirmed by theory [5], numerical
simulation [14,15], and experiment [8].

In dynamical correlations, the decay of the oscillation to
the mean charge density gets faster with increasing z as a

PHYSICAL REVIEW E 78, 021904 (2008)

result of electrostatic effect dominant over the entropic (fluc-
tuational) effect. On the other hand, the decay gets slower
with increasing ¢ because, also by the linear response theory,
the electrostatic interaction on the polymer is screened so
much that the charge density decay in response to the re-
moval of central charge becomes slow down to the free one
dimensional diffusion process.

We have studied the charge fluctuation on a charged rod-
like polymer with mesoscopic Hamiltonian within the Gauss-
ian level and Manning-Oosawa theory of counterion conden-
sation. Despite its simplicity, our model predicts, as effects
of the charge fluctuation and screened electrostatic interac-
tion, one dimensional ionic liquidlike spatial correlation and
unusually fast relaxation of the charge density.
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